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Abstract. We report the first analytic study of red time andfrequency dependent behaviour at 
T = 00 of the 20  square lattice Vansverse Ising model. Our study. along with known results in the 
ID case, in the mean field or mo ease and in other studies, helps understand the experimentally 
obtained longitudinal dynamic smcture factor of the induced moment ferromagnet LiTbF4 
studied by Youngblood et al. and is consistent with the studies of K6tzler et 01. 

1. Introduction 

The transverse king model was originally proposed by Blinc and by de Gennes [I] to 
describe the order parameter motion in hydrogen bonded ferroelectrics. It is one of the 
simplest quantum spin modeIs with non-trivial spin dynamics. It turns out, however, that 
there is no understanding of quantum spin'dynamics in this model in finite dimensions 
D > 1. The spin dynamics in the D = 1 case is solvable at temperatures T = 0 and at 
T = CO. Some studies on the spin dynamics of this model in the mean field limit, i.e., at 
D = CO, have also been carried out. We shall return to these points later. 

The Hamiltonian for the transverse king model is given by: 

In equation (I), r describes the crystal field splitting~ of the ground state doublet into two 
non-magnetic singlets in ferromagnets such as LiTbF, [Z, 31 and the tunnelling frequency 
of the protons in their double-well potentials while opposing the ordering effect of the 
interaction J ,  in ferroelectrics such as KH2P0, ( ~ P ) ,  and S = &. The longitudinal dynamic 
structure factor, i.e., the Fourier transform of the total z z  component of the normalized 
dynamical spin correlations, is defined as follows, 

m 
SLz(IC,m) = (IjiT)/ (Sz(-k,O), S,(k,t))cos(ot)dt/(SL(-k.O), S'(k 0)). (2) 

0 

The angular brackets in equation (2) denote canonical ensemble averages. The longitudinal 
dynamics of this model has been carefully studied experimentally by Youngblood et a1 [21 
and by Kotzler er al[3]. The latter [31 have pointed out that the dynamical behaviour of this 
model can be well described by a certain phenomenological relaxation coupled oscillator 
model 131. However, it is fair to say that an understanding of the dynamical behaviour of 
the transverse king model in D = 2,3 based on the acrual quantum spin dynamics of the 
model is still lacking in spite of rather extensive work on this model. Given that this is 
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among the simplest model Hamiltonians for studying quantum spin dynamics, it would be 
highly desirable to understand the experimental results based on an analytic study of the 
longitudinal dynamics in a transverse Ising Hamiltonian. That is precisely the focus of this 
work. 

This paper is organised as follows. We discuss the known results and the open questions 
on the dynamics of the transverse king model that motivate this study in section 2. Section 
3 details the formalism used to carry out this study. The calculations and the results are 
presented in section 4. Section 5 summarizes this work. 

2. Motivation for the study 

It is well known that the partition function for the I D  nearest-neighbour transverse Ising 
model was first exactly evaluated by Lieb and coworkers in 1961 [4]. These authors showed 
that the I D  transverse king model can be mapped onto a gas of non-interacting fermions, 
which is a solvable problem. The transverse and logitudinal dynamics of the ID nearest- 
neighbour transverse Ising model has been studied by several authors at T = w [5, 61 and 
at T = 0 (Lee and Kobayashi’s work, in [6]). 

Not surprisingly, the static and dynamical behaviour of the COD transverse king model 
has also been well studied by several authors such as Pytte and Thomas, Stinchcombe 
and others [7]. In addition, an approximate 3D study of the longitudinal dynamics of the 
nearest-neighbour transverse king model on the simple cubic lattice has been camed out 
using both the three-pole approximation method and the mean field approximation method 
(to calculate the necessary static correlations) by Tommet and Huber [SI. The entire subject 
was reviewed some ten years ago by Dumont [9]. 

In the WD limit at T = w, it is theoretically well established and intuitively transparent 
that for the limiting case of weak (strong) transverse magnetic field r compared to (JSZ)”’, 
the longitudinal dynamic structure factor will show a peak at U = 0 (w = r j2)  [8]. Thus, 
the weak-field limit exhibits no longitudinal dynamics, i.e., 6 function peak at w = 0, and 
the strong-field limit leads to a picture in which N independent spins precess about the field 
r j 2  [8]. The dynamic structure factor, however, is more interesting when r x (JSZ)’/2. that 
is when the field strength and the ferromagnetic coupling are competitive. 

Experiments with real 3D systems show that in the neighbourhood of w it: r j2 ,  for 
r x J j 2  the dynamic structure factor, which exhibits a broad central peak, possesses a 
rather long tail [2, 31. In theoretical studies with D > 1, this regime is inaccessible via 
standard perturbative approaches and hence the study of the dynamics of the transverse 
Ising model in this regime in all finite D 5 1 has remained a challenge. The study of 
the behaviour of the dynamic structure factor in this competitive regime (to be precise, at 
r = J / 2 )  at T = CO at D > 1 is the primary objective of this work. It turns out that the 
results are not strongly sensitive to the precise value of r as long as r - J j 2  [lo]. Hence, 
as we shall see, our theoretical calculations can be directly compared with the experimental 
data in €21. 

In addition to our calculations [lo], it is experimentally observed that for the transverse 
king model, lowering of temperature leaves the dynamic structure factor approximately 
invariant [Z, 31. This observation suggests that the physics of the system at T = CO is 
probably an acceptable description for the entire paramagnetic regime. Such evidence is 
also present in studies on a related system, that of the dynamics of a classical oscillator in 
a double-well potential in contact with a heat bath at temperatures = barrier height [ 111. 

It is well known that in ID, the relaxation function (.S:(t).Sf) for r = J j 2  is exactly a 
Gaussian and the dynamic structure factor is approximately a Gaussian at T = CO, where J 
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is the nearest-neighbour king coupling [8,5,' 61. It is not surprising that an exact calculation 
is possible in ID. After all, in 1D the transverse king model can be mapped to a gas of 
non-interacting fermions 141. 

The same quantity, quite understandably, becomes prohibitively difficult to estimate 
analytically in 2D when any mapping to the fermionic picture yields a system of interacting 
fermions. We have, however, managed to estimate the dynamic structure factor analytically 
in ZD using the highly successful recurrence relations method [l2, 131 (the I D  treatment 
via this method appears in the work of Florencio and Lee in [6]) in conjunction with the 
newly developed and powerful direct summation method [ 14, 1.51 for studying dynamical 
correlations. Our ZD calculations reveal a dynamic structure factor with the characteristics 
mentioned above and experimentally observed for LiTbF4, which has a 3D tetragonal 
lattice. Since the essential difference between the 2D and 3 0  models at T = w lies in the 
different coordination numbers of the two systems and in the increased lattice connectivity 
in 3D [16], we conjecture that the general properties of the relaxation function in the T = 03 

dynamics will be marginally affected as one goes from 2D to 3D. In other words, the overall 
qualitative features of the dynamic structure factor should only weakly depend on the lattice 
dimensionality for D =- 1 at T = CO in the transverse king model. Therefore, we expect 
that our 2D calculations should lead to some understanding of the dynamic structure factor 
in LiTbFa in the paramagnetic phase. As we shall see later, this expectation indeed comes 
through. 

Based on a calculation of the first two moments of the shape function in the simple 
cubic lattice, and comparison between analytical calculations and numerical simulations for 
a S = 1 transverse king chain, Tommet and Huber [SI have pointed out that at T = w, the 
shape function and hence the dynamic structure factor are most likely nearly independent of 
k. Therefore, onecan replace the total spin z z  correlations in equation (2) by 4N(S;(t)S;(O)) 
at T = w and still expect to get quantitatively meaningful results should the Tommet- 
Huber hypothesis be approximately true. As we shall see, our results compare well with 
experiments and hence give further evidence in favour of the Tommet-Huber hypothesis 
for the transverse Ising model [SI. We will therefore focus on a calculation of the tagged 
spin dynamical correlation for the remainder of this paper. 

3. The formalism 

The calculation of the tagged spin relaxation function for a square lattice is accomplished 
as follows. Using the recurrence relations method 112, 131 we first write the time evolving 
spin operator S:(t) as an orthogonal expansion in a Hilbert space S defined by some 
suitably chosen scalar product. A reasonable choice of the scalar product is the Kubo scalar 
product which is nothing other than the susceptibility formula [IZ]. The reader may note 
that the Kubo scalar product becomes the fluctuation formula in the T = CO limit. This 
simplification, which trivializes the calculation of the static correlations at T = 00, is one 
of the reasons why the study of spin dynamics at T = 00 is easier to carry out than doing 
the same at T = 0. Thus, we begin by writing 

(3) 

where f& and ae(t)  are orthogonal basis vectors (defining the Hilbert space S) and their 
time dependent coefficients, respectively, in S. The orthogonality of the f& are realized 
through the Kubo scalar product as mentioned above. 
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Thus, upon choosing a fo, one can exploit the Kubo scalar product to determine fl and 
the higher f,. In general, the choice of the Kubo scalar product leads to a simple recurrence 
relation (RR I) for the f, (given the choice of fo) given by 

(4) 
where A, = (f,, f,)/(f,-l, &I),  are the ratios of the 'length squared' of the basis vectors 
in the space S (h 1). Thus, the A, carry information about the geometrical properties of 
S. Since equation (4) above must satisfy the Heisenberg equation of motion, it turns out 
that there must also be a recurrence relation for the a,(?). This recurrence relation, RR iI  is 
given by 

f,tl = iW, fJ + Arf&-l 

A,+Iu,+I = -da,/dt + ~ f i - 1 .  (5) 
A more convenient way of writing RR If is by taking a Laplace transform of RR 11. One 

can show 1121 that the Laplace transformed version of equation (5) can be bent into an 
expression for a&) in terms of a continued fraction. The reader may note that the structure 
of the continued fraction obtained from equation (5) is sensitive to the choice of the scalar 
product. Thus, a choice of a different scalar product will yield a continued fraction which 
is structurally different and hence could be easier or more difficult to solve [13]. Typically, 
it turns out that d + cc) in equation (3) and the expression for ao(z) is an infinite continued 
fraction [14, 15, 171. The following is an expression for a&): 

A3 
Z +  

Ar 
Z f . . .  t o w  

Z + ... 
Realizing the fact that a& = 4(S;( t )S3 at T = w ,  it Follows that the necessary 
information for computation of the Laplace transformed relaxation function given in equation 
(6) above is contained in [A&]. The following summarizes the calculations leading to an 
estimation of A, and the subsequent evaluation of our relaxation function, a&), and of the 
dynamic structure factor S(k, CO) (where superscript zz has been supressed). 

The evaluation of the continued fraction in equation (6) is non-trivial. Typically, for 
most interesting problems, the continued fraction in equation (6)  is not exactly solvable. 
It turns out that it may be possible to numerically obtain the distribution of poles in 
equation (6) when it is not exactly solvable. This is accomplished via the direct summation 
method [14, 151. This method is discussed in detail elsewhere [ 151. We therefore summarize 
the basic idea behind the direct summation method. 

It turns out that typically A, - pa, where 0 < (Y < 2 for most many-body quantum 
spin systems [18]. If (Y c 2, then any infinite continued fraction can be replaced by a finite 
continued fraction with a large number of levels. The accuracy to which the poles of the 
infinite continued fraction can be estimated obviously improves when a larger number of 
levels are kept in the truncated continued fraction. It is rather straightforward to estimate 
continued fractions with as many as IO6 levels. Thus, for most many-body quantum spin 
systems, it is possible to replace infinite continued fractions by finite continued fractions. 
The direct summation method then provides a simple recipe for evaluating these finite 
continued fractions efficiently with minimum round-off error. It also provides a simple and 
powerful algorithm to evaluate the inverse Laplace transform of the evaluated continued 
fraction. This inverse Laplace transformed function is the relaxation function under study. 
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It may be noted that, to our knowledge, the following is the first calculation of dynamical 
correlations of spin operators in a ZD~quantum spin system at high temperatures which does 
not resort to the mean field approximation or related approximation techniques but rathw 
approaches the real time dynamics problem directly, to the extent feasible via the state of 
the art symbolic manipulation algorithms, on the real space lattice~[l9]. 

4. Calculations and results 

Let us take 8, and 8, (see equation (1)) to equal unity in our square lattice, i.e., we have 
nearest-neighbour Ising interactions. Let us also impose toroidal boundary conditions on 
our system. Thus, fo = S; and fi = -(r/Z)$. The terms in f z  are obtained using RR I 
with A, = r2/4 and involve strings of two-spin operators involving the nearest-neighbour 
sites of the spin at T. Likewise, f, involves strings of three-spin operators with the spin 
operators of the rth site, its nearest and second-nearest neighbours, and so on for the higher 
f,. The sequence of f,, quickly becomes extremely complicated. Thus, the expression for 
f s ,  which is the highest order to which we have carried out rigorous calculations, already 
contains about 1500 terms. The efforts required to obtain higher f ,  grow exponentially and 
are therefore truly formidable [lo]: It turns out, however, that the A,, which are the ratios 
of the lengths squaed of the basis vectors, are more tractable quantities. For the special 
case of r = 312 with r = 2 K and J = 4 K in equation (l), these are, 

AI = 1 A z = 4  A 3 = 7  

A4 22 As = A6 = 354 074121 252 ' 0 253 
7 

and so on. It may be noted that our choice of r and J is consistent with those in [Z] where 
i? = 2.68 K and J x 4 K. 

The problem now is to estimate the infinite continued fraction in equation (6) with the 
knowledge of the first few recurrants above [ZO]. Although these are just a few of an infinite 
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set, a plot of A , / p  versus l / p  (see figure 1 inset) already reveals an important general 
feature of A, as a function of p, i.e., an overall linear pattern with oscillations around 
linearity [21]. It is well known that an infinite continued fraction with linear A,, which 
occurs in the ID transverse Ising model problem for r = J/2, is exactly solvable and yields 
a Gaussian relaxation function 16, 151. In addition, approximately linear behaviour of A, 
has also been obtained in other simple quantum spin dynamics problems yielding a variety of 
relaxation functions [22]. Note, however, that the deviations from linearity in A4, As, A6 
indicate that the relaxation function will be different from a Gaussian cake [15]. Let us 
focus on how the behaviour of A, for p > 6 can affect the long-time behaviour of the 
relaxation function. The following aspect of the study relies on the recently developed direct 
summation method of calculating dynamical correlations using continued fractions [14, 151. 

We have explored several extrapolation schemes to approximately describe A, for p > 6 
based on available information. The following describes some of the schemes we have tried 
for even and odd p, respectively, 

J Florencio Jr et a1 

A, = 3p - 2 + @(p)0.67 

A, = 3 ( ~  - 1) - @(P) 

(8) 

(9) 

where + ( p )  is a parameter that describes the amplitude of the oscillations of A, about 
linearity. There are several obvious possibilities for @(/L). namely, (i) the oscillations can 
increase with p, (ii) the oscillations can remain constant, and (iii) the oscillations can 
decrease with p. We will argue that (i) is not to be expected on physical grounds because 
if the oscillations are to continue to increase, ~ ( z )  will (a) eventually tend to truncate 1151 
or (b) for sufficiently rapidly growing oscillations A, will eventually become less than zero 
if the overall linear growth rate  of^ A, must be respected. Possibility (ia) is physically 
less appealing as it would imply that the infinite continued fraction tends to self-truncate 
and hence the excitation tends to localize in real space [15]. (ib) is physically unreasonable 
because the A, are, by definition, positive definite quantities. Thus, +(p)  must either satisfy 
(ii) or (iii). We have carried out extensive calculations using the coefficient of @(p)  = 0.67 
for even p and -1.0 for odd p to explore option (ii). We have also studied the cases with 
@(p) = 1/(p - 4) for even p and @(p) = 1/(p - 5) for odd p and @(p)  = l/m 
and @(p) = 1/- for even and odd p, respectively of option (iii). The constants 0.67 
and -1.0 in even and odd ,u cases of @ are arrived at by using the deviations of Ah, A5 
and A6, respectively, from the straight line A, = 3p - 2. 

It is important to note that for option (ii) to be physically reasonable, one must find that 
the A, will oscillate around linearity with constant amplitude for all p 2 3 for r = J / 2 .  
Observe that A, are functions of multipoint static correlations of our system. Thus, at 
infinite distances from site T, one might expect that the A,, which are the ratios of sums 
of large numbers of static correlations entering from each of the allowed strings of spin 
operators in the f, versus those from f,-,, will go to 00 (although special cases to the 
contrary are known [E]). While our calculations suggest that A, -+ 00 as p + 00, they 
do not give any indication to expect that A, will oscillate uniformly about linearity for all 
p. In fact, a Pad6 analysis [lo] of the expression using the exact A,-A,j for the relaxation 
function, 4 ( S f ( t ) S f ) ,  reveals that the oscillations in A, should decrease as in option (iii) 
above. The decay of the oscillations as predicted by Pad6 analysis of the relaxation function, 
ao(t), is consistent with the I/p type decay hypothesis invoked above. We therefore use 
the data from the solid line in figure 1 to compute the dynamic structure factor in figure 2 
and ignore the results obtained using the I/& type decay hypothesis (described via the 
dashed line) in figure 1. 



Dynamic structure factor of transverse Ising model 1369 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

w (Temperahre Units) 
Figure 2. Dynamic smcture factor. Solid, theory, using 'I/+' scheme; squares experiments of 
Youngblood ern1 [Z]. 

Upon taking a Fourier transform of the dynamical correlation we find a spectrum that 
exhibits a broad central peak centred at w = 0 without any obvious side peaks or shoulders 
but, instead, a smoothly decaying S(k, w )  between 1.0 < w Q 2.0, i.e., between energy 
transfers of 0.09 meV and 0.17 meV (i.e., 1.0 < w < 2.0 in temperature units) or so in 
S(k, w )  as seen in the experiments of Youngblood et a1 as shown in figure 2. The reader 
may note that in reproducing the experimental data in [Z] we have manually estimated the 
positions of the data points from the data in figure 2 (open circles) of [2]. The errors in 
the data are roughly commensurate with the same in our plots and hence, for our purposes, 
the data reproduced in figure 2 are adequate. Clearly, the agreement between theory and 
experiment is significant except for one data point at w sx 0.01. Based upon the dynamic 
structure factor obtained exactly in ID and in the mean field analysis we suspect that the 
experimental data point at w 0.01. if accurate, ,could be representative of the rather 
low T (w 4 K) of the actual system which possesses a 3D tetragonal lattice structure (as 
opposed to our ZD quadratic lattice structure). To understand the disagreement between the 
experimental data and the theoretical prediction at w w 0.01 let us note that we have made 
three~important assumptions in this study. First, we have assumed that the Tommet-Huber 
hypothesis is valid for the 2D system, second, we have assumed that the A& in (8, 9) are 
correct as + cu, and third, our results at T + 00 adequately represent the behaviour of 
the relaxation function at T > T,. In general, however. our results are significantly closer 
to the experimental data when compared with the three-pole approximation based results of 
Tommet and Huber and the mean field based results of Stinchcombe and others which find 
a 'peak' near w /  r = 4, i.e., at 1 K. 

Our results can also be successfully compared with the work of Kotzler er al [3] who 
measured the dissipative part of the dynamic susceptibility ~"(0) (see the inset in figure 1 
in [3]). The connection between S(w) and x"(io) is given by [23] 
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where we have set A 
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1 as mentioned earlier. 

5. Summary 

We know that the dynamic structure factor is a Gaussian in the ID case [6] .  It is also 
known that the same quantity exhibits a distinct peak at w = r/2 in the COD case 
[8]. It is therefore intuitively reasonable that the 3D case might exhibit a tendency of 
suppression of the quasielastic central peak and one of enhancement in magnitude of S(k. w )  
in the neighbourhood of w = r/2.~ The validation of this conjecture will be addressed 
elsewhere [IO]. 

To summarize, we have presented a calculation of the dynamic structure factor of the 2D 
transverse king model at T = 00 via the recurrence relations method. In addition, we have 
exploited the direct summation method and the Tommet-Huber hypothesis for calculation 
of the dynamic structure factor of the transverse king model. We have also compared our 
results with experimental data for a 3D transverse Ising model at T > T,. Our study reveals 
details of the propagation of excitations in real space in the 2D transverse king model and 
our calculation of the dynamic structure factor compares favourably with experimental data 
without ours having to invoke any free parameters in the study. 
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